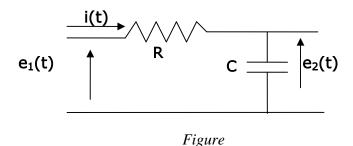
TP3:


Analyse temporelle des systèmes LTI du premier et second ordre et d'ordre supérieur et de la notion de pôles dominants sous Matlab et Simulink

OBJECTIF:

Le but de ce TP est l'analyse des réponses temporelles des systèmes linéaires invariants dans le temps, du 1^{ier} et du 2^{ème} ordre er d'ordre supérieur. Les sorties temporelles seront évaluées pour des entrées usuelles telle que l'impulsion, l'échelon, et la rampe, par Matlab et Simulink

1. SYSTEME DU PREMIER ORDRE:

Soit le système électrique du premier ordre donné par la figure

$A/e_1(t)$ est une impulsion ou un échelon.

A.1 Ecrire l'équation différentielle régissant le circuit en déduire la fonction de transfert

$$H(p) = \frac{E2(p)}{E1(p)}$$
 dans le cas où **RC=1**.

- **A.2** En utilisant la fonction Matlab "tf= (num;denum)" Créer H(p).
- A.3 Tracer la réponse du circuit quand l'entrée est :
 - une impulsion, en utilisant la fonction "impulse(.)"
 - un échelon en, utilisant la fonction " step(.)".
- B/ $e_1(t)$ est une rampe.
- **B.1** Trouver l'équation différentielle exprimant la réponse $e_2(t)$ quand l'entrée est une rampe.
- **B.2** Tracer dans ce cas la courbe de la réponse.
- **B.3** Evaluer graphiquement l'erreur statique. Comparer avec les résultats théoriques.

Dr BOUREBIA 1

C / Refaire l'étude du système du premier ordre par SIMULINK faire varier les entrées (impulsion, échelon, rampe) comparer avec les résultats trouvés précédemment.

2. SYSTEME Du 2ème ORDRE.

Soit la fonction de transfert $F(p)=25/(p^2+4p+25)$.

- **A.1** Tracer sa réponse à une impulsion et à un échelon.
- **A.2** Quand l'entrée est un échelon, évalué graphiquement:
 - Le maximum de dépassement M_p .
 - Le temps t_p correspondant au maximum de dépassement.
 - Le temps $\mathbf{t_m}$ de montée à 100% /rise time/.
 - Le temps de réponse **t**_r à 5% / settling time/.
 - -Comparer avec les résultats théoriques.
- **A.3** Tracer la réponse quand l'entrée est une rampe.
- B/ Refaire l'étude du système du deuxième ordre par SIMULINK faire varier les entrées

(impulsion, échelon, rampe) comparer avec les résultats trouvés précédemment.

3. SYSTEME D'ORDRE SUPERIEUR ET POLES DOMINANTS

Considérons le système d'ordre 3 suivant :

$$H(p) = \frac{1}{(1+p)\left(1+\frac{p}{6}\right)(1+\frac{p}{22})}$$

A/ Calculer par MATLAB sa réponse indicielle.

B/ Approximer la fonction de transfert par une nouvelle FT d'ordre réduit en ne conservant que les pôles dominant.

Dr BOUREBIA 2